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 INTERNATIONAL ECONOMIC REVIEW
 Vol. 20, No. 1, February, 1979

 ON OPTIMAL ECONOMIC GROWTH WITH VARIABLE DISCOUNT

 RATES: EXISTENCE AND STABILITY RESULTS*

 BY TAPAN MITRA1

 1. INTRODUCTION

 In this paper, I shall consider a framework of optimal growth, where the tech-
 nology is specified by the well-known one-good neoclassical model, and the
 planner's objective function is of the form:

 T

 (1) EIoeu(c,) where a, > 0, for t > 1, a = 1.
 t=1

 For t>1, flt+I=(xte+/a,) is the discount factor for time period (t+ 1), and Vt+i
 = (l/pt+ )-1] is the corresponding discount rate. In contrast to the traditional
 objective functions used in Cass [1965] and Koopmans [1965], we shall allow
 the discount factor (and, hence, the discount rate) to vary over time.

 If the planning horizon, T, is infinitely large, and we allow the sequence of
 discount factors to vary arbitrarily, it is clear that an optimal (or a weakly-maximal
 program) will not, in general exist. (Optimality and Weak Maximality are de-
 fined, following the approach of Gale [1967] and Brock [1970], in Section 2).
 On the other hand, if the sequence of discount factors satisfies certain conditions
 (e.g., the discount factor is constant and < 1), then we know that an optimal
 program will exist. A natural question that arises then is the following: Is
 there some easily applicable criterion by which the two cases can be distinguished?
 In other words, is there a necessary and sufficient condition on the discount factors
 for the existence of optimal (or weakly maximal) programs?

 This question is answered in the paper, in Theorems 1 and 2. Weakly maximal

 programs are shown to exist if and only if ( (1/x,)- oo as T-+ oo. (Theorem 1)

 This means, in particular, that even when future utilities are given greater weights
 than current ones, weakly maximal programs will exist, provided such weights
 do not become large "too fast".

 Optimal programs will exist if and only if there is A< oo, such that ac,g A for
 t?1 (Theorem 2). This characterization compared to the one on weakly-
 maximal programs, indicates the difference between optimality and weak-
 maximality precisely. Thus, if o -) x, weak-maximal programs could exist, but

 * Manuscript received Novenmber 4, 1976; revised November 9, 1977.
 1 An earlier version of this paper was presented at a workshop in Economic Theory at

 Cornell University, August 1976. Comments from participants in the workshop are gratefully
 acknowledged. The present version has benefited from conversations with William, Brock and
 Mukul Majumdar, and a referee's and editor's comments. This research was partially sup-
 ported by National Science Foundation Grant SOC 76-14342 to Cornell University.
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 134 TAPAN MITRA

 optimal programs could not.

 Another question of long-standing interest in this area is the following. When
 weakly-maximal (or optimal) programs do exist, what can we say regarding their
 long-run behavior? In other words, is there some sense in which such programs
 are asymptotically stable? This is answered in Theorem 3, where weakly-maximal
 programs from different initial stocks are shown to exhibit a "twisted turnpike"
 property; that is, they converge to each other. It should be noted that this is

 really the basic turnpike property. The more familiar result, where optimal
 programs are shown to converge to an optimal stationary program ("golden
 rule") is a consequence of the assumption of stationary intertemporal preferences.

 There is very little in the literature on optimal growth theory with variable
 discount factors which deals with the above-mentioned results. Brock [1971]
 examined some relations between "sensitivity results" and the existence of weakly-
 maximal programs. Similar results also appear in Mirrlees and Hammond
 [1973] in their study on "agreeable plans." However, no existence result like
 the one proved here, was established. It should be observed, however, that it
 is particularly the results of Brock [1971], and the result on the complete char-
 acterization of efficiency by Cass [1972] that enables one to arrive at Theorem 1,
 as will be evident from the technique of proof. It should be mentioned, in this
 connection, that, since the results of Brock [1971] have not been generalized to
 the multi-sector case, the generality of the results of this paper remains an open
 question.

 The existence of an optimal program is often established in the literature (see,
 particularly, Weizsacker [1965], and McKenzie [1974] for the case where tastes
 are allowed to vary over time), by assuming that there is a competitive program,2
 for which the value of input, at the competitive prices, is bounded above, and
 showing, then, under certain conditions, that this competitive program is optimal.
 This is closely related to the sufficiency part of Theorem 2 (even though we prove
 what is assumed in these papers). However, the necessity part of Theorem 2
 is completely absent in their works.3

 On the asymptotic behavior of weakly-maximal programs, we note that
 McKenzie [1976] proves a similar result in a much more general context, but by
 assuming properties on weakly maximal programs, like "uniform reachability,"
 which are, in general, difficult to verify. Our result is proved without any such
 assumptions, and is useful because it provides a standard by which generalizations
 may be evaluated.

 It should be mentioned that optimizing models with variable discount rates
 have been examined by Strotz [1955-56], Pollak [1968], and Peleg and Yaari
 [1973], to investigate the problem of myopia and inconsistency in planning; and
 by Uzawa [1968] to investigate some qualitative properties of short and long-run

 2 See Section 2 for a definition of this concept.
 I This, however, does not mean that the necessity part has not received any attention in the

 literature. See especially McKenzie [1976] for a discussion of the difficulties of proving the
 necessity result in a general model.
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 GROWTH WITH VARIABLE DISCOUNT RATES 135

 consumption functions. I should state that these interesting studies are con-
 cerned with issues which are quite different from those examined in this paper.

 2. THE MIODEL

 We consider a neoclassical one-good model, with a technology given by a

 function f from R+ to itself. The production possibilities consist of inputs, x,

 and outputs, y =f(x) for x >0. The following assumptions on .f() are main-
 tained throughout the paper:

 (F.l ) f (0) = 0.
 (F.2) f (x) is strictly increasing for x > 0.

 (F.3) f(x) is continuous for x > 0, and twice continuously differentiable for
 x > 0.

 (F.4) f(x) is strictly concave for x > 0, and J"(x) < 0 for x > 0.
 (F.5) J(x) satisfies the end-point conditions: f'(x)-+d < 1, as x-+oo;f'(x)-coo

 as x-+0.

 We define a feasible production program from x>0, as a sequence (x, y)

 =(x,, +, ,) satisfying

 (2) xo= x, 0 < x, < ?y for t > l, and f(x,) =vw+ for t > 0.

 The consumption progranm c=(c,), generated by (x, y) is given by

 (3) Ct = 1 - xt ( 2 0) for t > 1.

 We shall refer to (x, y, c) as a feasible program, it being understood that (x, y)

 is a production program, and c is the corresponding consumption program.

 A feasible program (x, y, c) from x>0, doninates a feasible program (x*, y*,

 c*) from x, if ct > c* for all t > l, and c, > c,* for some t. A feasible program
 (x*, y*, c*) from x is said to be iniefficient if some feasible program from x domi-

 nates it. An efficient programn is a feasible program which is not inefficient.
 Under (F.l)-(F.5), there exist unique numbers b, b satisfying 0< ? <b< x,

 and f'(b) = I, f(b) = b. For any feasible program (x, y, c) from x e (0, b), we

 have x,, Y. + . c, + I < b for t ? 0. ((0, b) represents the open interval {z E R+:
 0<z<b}). A feasible program (x. y, c) from x>0, is called interior if xt, c

 >0, for t>0. For an interior program (x, vl, c), we denote by , the expression
 *-I

 f f'(xs), fort > ?.
 s=O

 The planner is endowed with a utility function u (defined on the non-negative

 reals) and a sequence a=(at) of positive numbers, which reflect the planner's
 time preference. Following Brock [1970], a feasible program (x*, y*, c*) from
 x>0, is called weakly-maximal if

 T

 (4) lim inf E a,[u(ct) - u(c")] < 0
 T-cx t=1

 for every feasible program (x, y, c) from x. Similarly, following Gale [1967] a
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 136 TAPAN MITRA

 feasible program (x*, y*, c*) from x >0, is called optimal if

 T

 (5) lim sup X, xju(ct) - U(C*)] < 0
 T-oo t=1

 for every feasible program (x, y, c) from x.
 A feasible program (x*, y*, c*) from x >0, is called competitive4 if there is a

 non-null sequence p*= (p*) of non-negative prices, such that

 (6) cxtu(ct*) - p*c* > atu(c) - P*C, c > 0, t ? 1

 (7) P - P* for x 0 O, y = f (x), t > 0.

 A price sequence p*=(p*), associated with a competitive program (x*, y*, c*),
 for which (6) and (7) hold, is called a sequence of competitive prices; (6) and (7)
 are called competitive conditions.

 The following assumptions on u will be used in this paper:

 (U.1) u(c) is strictly increasing for c > 0.

 (U.2) u(c) is twice continuously differentiable for c > 0.

 (U.3) u(c) is concave for c > 0 (u'(c) < 0 for c > 0).

 (U.4) u(c) satisfies the end-point condition: u'(c)--+oo as c-O.

 The sequence a=(at) will be assumed to satisfy:
 (A.1) a, = 1; and, there are positive numbers m, m' such that

 ffl < (octx/cI )f'(b) < (1 - m) for t > 1.

 We note here that, under the assumptions, an interior program (x*, y*, c*)

 is competitive iff the following Euler conditions hold:

 (8) [;tU'(c*)]/2x'+1u'(ct+*1)]- f'(xt) for t > 1.

 This result is easily established, and is stated here for ready reference, as it is

 often used in the next three sections. When an interior program (x*, y*, c*)
 is competitive, then the sequence of competitive prices p*=(p*) are seen to be

 given by:

 (9) PO = a1u'(c*)f'(x*); p* = 0(u'(c*) - p*/7r* for t > 1.

 3. A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE

 OF WEAKLY MAXIMAL PROGRAMS

 In this section, I shall establish that a weakly-maximal program exists if and

 only if the discount factors satisfy the condition that X (1/ah)--oo, as T-*oc.

 This result, of course, includes as a special case the fact that if the discount factor
 is constant (say, f>0), then a weakly-maximal program exists if and only if

 I This definition was introduced by Gale and Sutherland [1968], and is a modified version of
 the definition used in Gale [19671.
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 GROWTH WITH VARIABLE DISCOUNT RATES 137

 /? 1. However, the result also points out the possibility that weakly-maximal
 programs could exist when the discount factor is variable, and, at each point of

 time, is greater than unity. Thus if t* is the smallest integer such that (lt*)<
 [1/f'(b)]-I, and a=t*+t, for t>2, then the variable discount factor at each
 point of time is greater than unity (i.e., the variable discount rate at each point of

 T

 time is negative), but since ( (I/ oc as T-* oc, a weakly maximal program
 t=l

 will exist.

 THEOREM 1. Under (F.1)-(F.5), (U.1)-(U.4), and (A.l), a weakly maximal
 program exists from xLE(0, b), if and only if

 (10) (t/c t) - as T - 0c.
 t=l

 PROOF. (Necessity) Suppose a weakly maximal program exists from x e (0, b),

 call it (x, y, c). Then, for each t ?1, the expression atCu[f(t- 1) - x] + a+ 1u[f(x)
 - ,+ ] must be a maximum at x = t. By (U.4), the maximum must be at an
 interior point, i.e., at > 0 for t ? 1. Hence, xt > 0 for t > 0, so that for each t > 1,
 ltu'Q(t) (- 1) + a 1u'(,+ 1)f'(Yt) = 0; or, by transposition,

 (1 1) [atu'(et)][ct+j1u'(Et+1)] =f'(xt) for t > 1.

 Using concavity of u and f, and (11), (x, y, c) is competitive.

 Using (I 1) repeatedly, we have for T > 2,

 (12) [ (1T1)f(1aTU jYf'().

 We claim now that

 (13) if as X aS oc.
 T=2

 In order to establish our claim, we need two lemmas. The logic of the lemmas

 in the proof of the theorem should, perhaps, be explained. We know that since
 (x y, ce) is weakly-maximal, it is also efficient. The theorem of Cass [1972]

 T

 on efficiency [if (x, y, a) is efficient, then E oit cc as T-* cc] can then be applied
 t=O

 to obtain (13), provided we know that infxt >0.
 t20

 However, if inft- = 0, then this theorem cannot be applied, and we have to de-
 t?O

 vise an alternative route. We note that, if lim 5 = 0, then we can directly check
 1-.oo

 that (13) is satisfied. So, the only case which can present problems in verifying

 (13), is where there is one subsequence of 54 which converges to zero, and another
 subsequence of xt which remains bounded away from zero.5 Lemma 2 shows
 that, given the structure of the model, this problematic case can never occur. This

 s A non-negative sequence (w,) is said to be bounded away from zero if inf w, >0. It is said

 to be bounded above if sup w, < oo.
 t50
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 138 TAPAN MITRA

 is proved with the help of Lemma 1, which shows that an interior competitive

 program satisfied a "catenary property" for "low" input levels, viz., if input

 levels are falling at a certain stage, they must be failing at all succeeding stages.

 Let us define i, such that f'(x)=2f'(b)/1m, and O<x~<b. By (F.5), this is
 possible. We can now state and prove (under the Theorem's assumptions),

 LEMMA 1. If a feasible program (x, y, c) from x e (0, b) is interior and

 competitive, and there is t'> 1, such that (i) x,? <i, anid (ii) x_1 > xt, then (x,)
 is a convergent sequence.

 PROOF OF LEMMA 1. Note that, since (x, y, c) is interior and competitive,

 so U (c,,) = (a,' + Il/t,)f '(x,,)u'(c,, + l) > U (ct, + l by using (i), the definition of i, and
 (A.1). Hence, ct,<ct,+I, i.e., f(xt,-,)-xt <f(xt,)- x +1. Hence, using (ii)
 in this inequality, we have x, +I <xte. We have, thus, established that (i') xt +1
 < i and (ii)) xt, > xt + I. Hence, the above argument can be repeated for all
 succeeding time periods to establish that (xt) is monotonically decreasing for
 t> t'-1. Since (xt) is bounded below by zero, so it is a convergent sequence.

 LEMMA 2. If a feasible program (x, y, c) from x E (O, b) is interior and com-

 petitive, then either (i) xt-+O as t-+oo, or (ii) inf xt>0.
 t>O

 PROOF OF LEMMA 2. Suppose, contrary to the Lemma, that there is one sub-

 sequence of (xt) converging to zero, and another subsequence of (xt) which remains

 bounded away from zero. Then there is some t'> 1, such that xt, < mim (2, 2-x).

 Now, clearly, it is not possible that xt-1 > xe. For, then, by Lemma 1,
 (xt) would be a convergent sequence. Hence xt,-1 ? xt. But, then, xt, ?<

 min (, 4 x), so that the above argument can be repeated to establish that

 Xt-2? x t-. Similarly, the argument could be repeated for all preceding time

 periods, yielding x < x1 < ... xt,-1?< xt, which contradicts the fact that xt,' < 2x

 and proves the Lemma.

 We return, now, to the proof of Theorem 1. By Lemma 2, either (a) 5-tO
 as t-i oo, or (b) inf 5t > O. In case (a), there is t* , such that for t ? t*, f '(5t) > 1,

 t20

 which establishes (13). In case (b), noting that (x~, y, c) is efficient, (13) follows
 from Theorem 3 in Cass [1972]. Thus, in either case, claim (13) is established.

 Now, note that for T>2, ST?b, so u'(ET)?u'(b)>O: hence, [a1u'(51)]/

 [OCTu'(T)]U?[au'(5l)]IEXTu'(b)]. Using this, and (13) in (12), immediately yields
 (10).

 (Sufficiency) Consider the following non-linear programming problem for
 T satisfying 1 < T < o.

 T

 Maximize E atu(ct)

 (14) subject to ct+1 + x1+1 = yt+i; IYt+y =f(xt) for t = 0,..., T- 1
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 GROWTH WITH VARIABLE DISCOUNT RATES 139

 Xo-X; XT > 0; Xt+1 Yt+1, Ct+1 > 0 for t = 0,..., T- 1.

 The assumptions ensure that there is a unique solution to this problem for each

 T; call the solution (XT+ , yT+1, cT?I)T -1. The solutions for different T's have
 the following relations to each other. For each t> l, XT <XT+1 <XT+2 <...
 and there is a feasible program (x, 5 , c), called the limit program henceforth,

 from x, such that, for each t?I, xT-*xt, YT+1-It+1l cT+1-ct+1 as T-*oo.
 (cf. Brock [1971], Theorem 2). We shall show that this limit program is weakly
 maximal when (10) holds. For this purpose, we need two lemmas. The reason
 for the lemmas can be explained simply. Lemma 3 ensures that the limit program
 is interior. This implies that, since the limit program is the limit of finite horizon
 optimal programs, it must satisfy the Euler conditions (see (16)).

 If we can show that the limit program is efficient, then we can use the result of
 Brock [1971], (Corollary 3), viz., if a program satisfies the Euler conditions, and
 is efficient, then it is weakly maximal. This would conclude the proof of the
 theorem.

 To show that the limit program is efficient, we consider two subcases given by

 Lemma 2, viz., either lim x = 0, or inf xt >0. If the first case holds it is well-
 tt..'x t2to

 known that the program is efficienit. If the second case holds, we can apply the

 theorem of Cass [1972] to prove efficiency of the limit program if L it,-+ oo as
 t=O

 T- oo. But to get this last result, from (10) and (16), we must make sure that

 u'(c) is bounded above, that is, ct is bounded away from zero. And, this is
 precisely what Lemma 4 shows.

 LEMMA 3. For the limit program (x, y, c-) from X, there is ?>0, such that

 t<?b _ for t?O.

 PROOF OF LEMMA 3. Define x, such that 0<&<b, and --m)>(X+
 at)f '() for all t> 1. By (A.1), this can be done. Now suppose the Lemma is

 false. Then, there is some t'> 1, such that xt, > max [ + I-(b -), x + 2 (b -x)

 Hence, there is some T, such that the solution (xT+1, yT+1, cT+1) T=T to problem

 (14) satisfies 4t x, so that (ott+ /1t)f'(xt4) < (o + 1/ct)f(5t)?(c t X

 Since (XT+1, yT1, cT?1)T; I is a solution to (14), so for each t, such that T-I
 >t>0, the expression L-to t1 I u[f(xT) - X] -XT must be a maxmum
 at x=xT?1. By (U.4), the maximum must be at an interior point, i.e., cT?1 >0
 for 0? t? T-1, and X+T >0 for 0? t? T-1. Hence, we have, for 0?t< T-I,

 ( 1 5) [~~at + I u (cT+ 1)]/[t + 2U (Ct+2)] -f(t+ )-

 Using this equation for t=t'-1, u (cT)lu'(cT'??(1- 2m)< 1. Thus cT>

 Cj>+1, implying that f(xT,) x, >(xT,) xt,?1. Now, there are two,possibilities
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 to consider: (i) x t1 <xf, or (ii) XfT, ?xT.

 If (i) holds, then 4+ >4 > i, so that the argument can be repeated to show

 that t+2 >Xt+l. Similarly, repeating the argument for succeeding periods
 yields t <x+t< T< . But, clearly T= 0. This contradiction rules out
 (i).

 If (ii) holds, then X[? x> . So, repeating the analysis, xf,_2?xT,1.
 Similarly, repeating the argument for each preceding period, we have x=x TxT

 ?24- - xt I1?xT. But, we know that 4t, >x. This contradiction rules
 out (ii). Since (i) and (ii) were the only possibilities, Lemma 3 is established.

 Returning to the main proof, note that et >0 for some t2 1. Otherwise, if j,=0
 for t>l, thenx+ =f(xt), andso x-+b as t-oo, contradictingLemma3. Hence,
 by Corollary 1 of Brock [1971], ct>0 for all t>1, and 9t>0 for t>0. Since
 (x, y, c) is the limit program, using (F.3), (U.2), and (15), we have

 (16) [xtU(t)]/[t1+u'(,t+1)] =f(9) for t > 1.

 By concavity of u and f, and (16), (x, y, c) is competitive.

 We know from Lemma 1 that either (i) t-+0 as t-* oo, or (ii) infx,t>0. In
 t20o

 case (i), (x j, e) is clearly efficient, so by Corollary 3 in Brock [1971], it is weakly
 maximal. In case (ii), we need

 LEMMA 4. If, for the limit program (x, iT, ,) inf x > 0, then inf ct > 0.

 PROOF OF LEMMA 4. We know that there is > 0, such that xt > k, for t > 0,
 and ?t < b-? for t > 0. So, there is k > 0, such that f(xt)-t 2 k, for t 2 0. We

 note then that c,< I k cannot occur successively for T* periods, where T* is the
 2

 largest integer, not greater than [(2b/k) +l. For, if it could occur, then +,

 -.f(Rt) -et+ I> t +-k for each of these periods. Thus, xt+T*>xt+--T*k 22

 > ?T*k b, a contradiction.
 2

 Now, by (A.1), there is Q<O0, such that ( ft /ai)f'(xt)?Q for t 1. Let
 Q=max(Q, 1); and, u'(--k)=M. Suppose, contrary to the Lemma, c *0

 along a subsequence. Then, there is t', such that u'(ct)> QT*M. This means,
 by using (16), and the definition of Q that u'(et, +1) > QT*-1M. Similarly, u'(et,+2)
 ? QT*-2 M, and continuing this procedure, we finally have U'(Rt + T*) > M. Hence,

 ctt I Ct'+T* are all <- Jk. But, this has already been shown to be
 impossible. Hence, infe ,>0, proving the Lemma.

 Returning to the main proof again, we note that in c ,.se (ii), there is 0> 0, such

 that 4,>0 for t>1. Using (16) repeatedly, [EaU'(el)]/[2TU'(O)]? [cx1u'(cl)]/
 [OCTU'(=T)]=?iTIf'(X) for T?1. Using (10), E TrT-0oo as T--*o. By Theorem

 Tr=2

 3 in Cass [1972], (x, y, e) is efficient. By Corollary 3 in Brock [1971], (x, y1, c)
 is, therefore, weakly maximal.
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 GROWTH WITH VARIABLE DISCOUNT RATES 141

 4. A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE

 OF OPTIMAL PROGRAMS

 Optimality is a stronger property than weak-maximality. Consequently,

 the necessary and sufficient condition for the existence of optimal programs

 should turn out to be stronger than (10). The result that is proved in this section

 is that the appropriate condition is the uniform boundedness of the sequence

 (at).

 THEOREM 2. Under (F.1)-(F.5), (U.1)-(U.4), and (A.1), an optimal program
 exists from x E (0, b) if and only if there is A < oo, such that

 (17) at<?A for t> 1

 PROOF. (Sufficiency) If (17) holds, then so does (10). Hence, there is a

 weakly-maximal program from x, call it (x, 9, c). Also, from the proof of Theo-

 rem 1, we know that (x~, 9, c) must be interior and competitive, and identical to
 the limit program (x, X, e). We shall show that (x, 9, e) is optimal, when (17)

 holds.

 By Lemma 1, either (i) t-+0 as t - oo, or (ii) inf5,=v>0. In case (i), there is
 J20

 t* > 1, such that f'(x) ?1, for t> t*, so that Pt is bounded above, and Ptt-+0 as
 t-* oo. Using the competitive conditions, the optimality of (x, 9, e) is immedi-

 ate.

 In case (ii), we apply Lemma 4 to get inf e, > 0. Hence, there is $ < oo, such
 t?1

 that u'(et)?f for t>1. Using (17), there is V<xc such that Pt?V for t>1.
 Now suppose (x, 9, e) is not optimal. Then, there is a feasible program (x, i, c)

 T

 from x, and p >0, such that _< MtM[u(ct) - u(t)] for a subsequence T7 of T,
 1 6t=

 and inf >t v 6 Define t (-x) 1 (
 tro 2

 u(,+ f)] for t >0. Then, by the competitive conditions, 6t 0 for t>0, and
 T T-1

 atW[(t) - U()] = PT(OT - XT) - bt for T ?1. Hence, for the subsequence
 t-1 t=O

 Ts, (5T- XTS)?(pIYV)=y'. Also, note that there are positive numbers i, K such

 that for 2-v? x < b, we have [-f"(x)] > k, and f'(x) < K. Hence, for the sub-
 sequence T 6 > 12 "([ T T)]iT+1+[T 5 XTS] 2 (k1K)pp=, say. Then, seunc T-2-2
 jiE at[U(Et) - U(4)] < PT, (XTv - XT.) - (S -1)6 < Vb - (s - 1)6. For large s, the
 right-hand side becomes negative. This contradiction proves the optimality of

 6 If (x, j, J) is not optimal, there is a feasible program from x, (x', y', c'), T., and p>O,

 such that at[u(c')-u(Cc)] ? 22. Define a program (x, y, ) from x, by x- = - ,t+It;

 t+1=f( ); e y -x for t0O. Then infx=2 (tinf 1n and T aju -u(2I 2==]t=
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 (Necessity) If (x, y, c) is optimal, then, following the proof of Theorem 1,

 it is interior and competitive. Also, since it is weakly maximal, so by Corollary

 2 of Brock [1971], it is identical to the limit program (,?, 9, i) of Section 3.
 Suppose (17) is violated. Then, there is a subsequence ts for which c-

 as s-*oo. It can then be easily seen that xt cannot converge to zero. For, if it

 did, rt would be bounded below, and p, wouild be bounded above. However,
 if X,-YO, then ct-*O also, so thcat u'(ct), and pt,-+cc, a contradiction. Then,
 from Lemma 1, there is ,i>0, such that x-?/ for t?0. And, from Lemma 4,

 there is 0 > 0, such that ct>0 for t> I. Let 0-1ft(/) (0lb). Then, there are
 positive numbers, n, N, M, suLch that for 0< c b, we have n: ?u'(c) < N, and

 [- u"(c)]<M. Now, define - I np, and 0b=(N/n)[l/fI(b)]LbN + Mb2j.

 Choose a subsequence of ts, call it tr, such that (i) tr+ >tr+2, and (ii) t/Itr+l

 >4at, for r > 1. Since tD-+ 9 as s-* oo, this is clearly possible. Finally, define

 i=min L-2 _---(01b), (nPlMb2)

 Now, construct a program (k, 9, I) in the following way: =x,,(1 -A') and
 i=Xt for t Atr 9+ 1 =Jf(xt,) and 9t=Yt for t#tr?1; a for t > 0.
 To check for feasibility of (x, y, c), note that cr Ctr + xtr >O; and Ctr+ 1 2 {[Ctr+ 1/

 vf(Xtr)] i} f(Xtr)?> [(0/b)-]f(Xt) > 0. For t#tr, tr+ I, at=Ct >? Hence (x, 9,
 c) is feasible.

 To prove that (x, y, c) is not optimal, note that we have ct1[u(ct1)-u(c1)1 is

 positive; call it a. Also, by straightforward calculations,7 for r2> 1 Itr+ u( I + )

 -u(ct+ 1)] ? 2-at+ 1 )bN + A >2b2j - tt0. Similarly, for r > 1, trtl

 +tr)-u(crr+ 1)] ? tr+l n4f 2-2b2 J 2tr+ iV'. Recalling that the sequence

 tr was chosen such that atr ?g > oct, for r > I, so we have, for all r>1 L u
 - u(ct)] 2 a which proves that (x, y, c) is not optimal. This contradiction proves
 that (17) must hold if an optimal program exists.

 5. AN ASYMPTOTIC STABILITY PROPERTY OF WEAKLY-MAXIMAL PROGRAMS

 In this section, 1 shall assume that ( 10) holds, so that weakly maximal programs

 exist from initial inputs x E (0, b). I shall show, then, that these programs exhibit
 the following asymptotic stability property: they converge to each other in input

 levels. (This is often referred to, in the literature, as a "twisted turnpike" proper-

 ty). If optimal programs exist (i.e., (17) holds), then they will also exhibit the
 same property, since they are also weakly-maximal. I shall restrict the initial

 input levels to the closed interval [a*, b*], where 0< a* < b* <b.

 I This involves applying Taylor's expansion tip to the second-derivative term, and then

 simplifying. The obvious details are omitted.
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 Before coming to the main result of the section, we need a lemma on finite-
 horizon programs, from different initial inputs. This lemma shows that if there

 are two finite horizon optimal programs with zero terminal input levels (i.e.,
 which solve a problem like (14)), and one has a larger initial input level than the
 other, then it has a larger input and consumption level than the other for every
 period. The method used is similar to that of Brock [1971], Theorem 1, where
 a result is proved on two finite horizon optimal programs with the same initial
 input level, and different terminal inptut levels.

 LEMMA 5. Under (F.l)-(F.5), (U.l)-(U.4), and (A.1), if the solution to (14),
 with x replaced by ai E [a*, b*] is (xt+ 1(a), ya+l(a), cT+I(d))T;Oj and the solution
 to (14), with x replaced by b E [a*, b*] is (XT+,(b), yT+l(b), CT?i(b))T-1, and if
 a <?b, then xT+iQa) xT+1(b) and cT?1(j) < cT+l(b), for t=O, 1,..., T-1.

 PROOF OF LEMMA 5. To prove that XTf+(a))<xT+l(b), suppose this is not
 true. Let t' be the first period when it is violated, i.e., xf+1(i)>4+1(b). Then,
 cT,+ (a)<cT?1Qi). By the arguments used in Theorem 1, the solutions are

 interior, and hence they both satisfy (15). Hence at'+2u'(cT'+2(d))>9t;+2
 U'(CT,+2(s)), cT+2(d)< ct+2(b), and, by feasibility, xT+2()> xT+2(b). So the
 argument can be repeated for all successive periods to obtain xT(@)>XT(b),
 which contradicts the fact that XT(-)=xT(b)=0.

 To prove that ct+ (a)?ct+1(b), suppose this is not true. Let t' be the first
 period when it is violated, i.e., ct,+(a > cT,+,(b). Using (15), and the fact
 that xT+I(a)<xT+1(b), we have cT+2(Q)>cT,+2(b). So the argument can be
 repeated for all successive periods to obtain cT+() > cT +5(b), for s = 1,...,
 T- t'. But xt,() < xt(b), and xT3Q) =T(5), which contradicts the fact that
 (XT+I(b), yT+l(b), CT+1(b)) is a solution to (14).

 THEOREM 3. Under (F.l)-(F.5), (U.1)-(U.4), and (A.1), given E>0, there is
 T* < oc, such that if (x(x), y(x), c(sy)) and (x(x'), y(x'), c(x')) are weakly-maxi-
 mal programs from x, .x' e [a*, b*], then I xt(X)-xt(.y')I<e for t?T*.

 PROOF. Consider the weakly maximal programs from a* and b*. Call
 them (x(a*), y(a*), c(a*)) and (x(b*), y(b*), c(b*)) respectively. Then, we know
 that these are the limit programs from a* and b*. Hence, by Lemma 5, xt(a*)

 <xt(b*), and ct+l(a*)<ct?+(b*) for t?0. Now, by Lemma 1 either (i) xt(b*)-+O
 as t-+oo, or (ii) infxt(b*)>0. In case (i), there is T' such that xt(b*)<e for t? T'.
 Hence, for t > T', Ixt(b*)-xt(a*)I <E.

 In case (ii), we note that both the weakly maximal programs must be interior
 and competitive, and, hence, both must satisfy the set of Euler conditions (8).
 This means that, for T>2,

 T-1

 u (cl(a*)) U'(CT(b*)) _ f(x(a*)) f'(b*)
 U '(cl(b*)) UI(cT(a*)) T-1 f (a*)

 H= fI(XS(b) s=O
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 Now, it is clear that xt(a*) cannot converge to zero. For, then, there is t*, such

 that f'(xt(a*)) ? 2f'(xt(b*)) for t> t*. Hence, the right-hand side of (18) will

 become unbounded for large t, while the left-hand side remains bounded. Thus,

 by Lemma 1, infxt(a*) -,>0. Then, there are positive numbers L, L such that,
 t20

 for i < x < b, f'(x) < L, and [-f"(x)] > L. We claim, now, that, given ?> 0,

 there is T", such that for t>T", Ixt(b*)-xt(a*)I<e. If not, then there is a
 subsequence of periods, say t, such that this is violated. Then, since [f'(xt,(a*))
 -f (x,,(b*))]=[xt,(a*)-xXt(b*)] [f"(4t,)] ? eL, so [f'(xt,(a*))/f'(xt,(b*))] ? [1 +
 (eL/L)]. Then, as r-oo, the right-hand side of (18) becomes unbounded,
 while the left-hand side remains bounded, a contradiction which establishes our

 claim.

 We let T*=max(T', T"), and note then that in either case (i) or case (ii),

 Ixt(a*)-xt(b*)l < 8, for t ? T*.
 Now, consider the weakly maximal programs from x, x' which both belong to

 [a*, b*], but are otherwise arbitrary. Call these programs (x(x), y(x), c(xY)) and
 (x(x'), y(x'), c(x')). Since these are limit programs from x, x', so by Lemma 5,

 we know that xt(a*)<x,(x) < x,(b*), and xt(a*)<xt(xS')<xt(b*) must hold for
 t>0. Hence, for t?T*, Ixt(Z)-xt(.')I<Ixt(a*)-x,(b*)I<s, which proves the
 Theorem.8

 S.U.N.Y., Stony Brook, U.S.A.
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